Disturbance observer based path tracking control of robot manipulator considering torque saturation

نویسندگان

  • Kwang Sik Eom
  • Il Hong Suh
  • Wan Kyun Chung
چکیده

This paper proposes a path-tracking algorithm to compensate for path deviation due to torque limits. The algorithm uses a disturbance observer with an additional saturation element at each joint of n degrees of freedom (DOF) manipulator to obtain a simple equivalent robot dynamic (SERD) model. This model is represented as an n independent double integrator system and is designed to ensure stability under input saturation. For an arbitrary trajectory generated for a given path in Cartesian space whenever any of the actuators is saturated, the desired acceleration of the nominal trajectory in Cartesian space is modi®ed on-line by using SERD. An integral action with respect to the di€erence between the nominal and modi®ed trajectories is utilized in the nonsaturated region of actuators to reduce the path error. To verify the e€ectiveness of the proposed algorithms, real experiments were performed for a two DOF SCARA-type direct-drive arm. 7 2000 Published by Elsevier Science Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary Feedback Stabilization of a Nonlinear Flexible Gantry Manipulator Using Disturbance Observer

This paper aims to develop a boundary control solution for a single-link gantry robot manipulator with one axis of rotation. The control procedure is considered with link’s transverse vibrations while system undergoes rigid body nonlinear large rotation and translation. Initially, based on Hamilton principle, governing equations of hybrid motions as a set of partial differential equations...

متن کامل

Adaptive Voltage-based Control of Direct-drive Robots Driven by Permanent Magnet Synchronous Motors

Tracking control of the direct-drive robot manipulators in high-speed is a challenging problem. The Coriolis and centrifugal torques become dominant in the high-speed motion control. The dynamical model of the robotic system including the robot manipulator and actuators is highly nonlinear, heavily coupled, uncertain and computationally extensive in non-companion form. In order to overcome thes...

متن کامل

Saturated Neural Adaptive Robust Output Feedback Control of Robot Manipulators:An Experimental Comparative Study

In this study, an observer-based tracking controller is proposed and evaluatedexperimentally to solve the trajectory tracking problem of robotic manipulators with the torque saturationin the presence of model uncertainties and external disturbances. In comparison with the state-of-the-artobserver-based controllers in the literature, this paper introduces a saturated observer-based controllerbas...

متن کامل

Path Tracking Control Of A Manipulator Considering Torque Saturation

When the minimum-time trajectory of a manipulator along a geometrically prescribed path is planned taking into consideration the manipulator’s dynamics and actuator’s torque limits, at least one of the joints should be at the torque limit. The execution of such a trajectory by a conventional feedback control scheme results in torque saturation. Consequently, the tracking error cannot be suppres...

متن کامل

Disturbance obsever based iterative learning control for robot manipulators

In this paper, usin a Lyapunov-like function, we derive a disturbance observer based iterative learning control scheme for the trajectory tracking problem of rigid robot manipulator. In this control scheme, the whole control law consists of two parts, the feedback control law, plus an iteratively updated term represents the estimated disturbance. The feedback control law using in this paper is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002